Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.
-
Characterisations. The following conditions are equivalent:
- The functor $F$ is pseudoepic.
-
For each $\mathcal{X}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the functor
\[ F^{*}\colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )\to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]
given by precomposition by $F$ is pseudomonic.
- We have an isococomma square of the form in $\mathsf{Cats}_{\mathsf{2}}$ up to equivalence.
- Dominance. If $F$ is pseudoepic, then $F$ is dominant (Definition 9.7.1.1.1).