Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.

  1. Characterisations. The following conditions are equivalent:
    1. The functor $F$ is pseudoepic.
    2. For each $\mathcal{X}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the functor
      \[ F^{*}\colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )\to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

      given by precomposition by $F$ is pseudomonic.

    3. We have an isococomma square of the form
      in $\mathsf{Cats}_{\mathsf{2}}$ up to equivalence.
  2. Dominance. If $F$ is pseudoepic, then $F$ is dominant (Definition 9.7.1.1.1).

Item 1: Characterisations
Omitted.
Item 2: Dominance
If $F$ is pseudoepic, then

\[ F^{*}\colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )\to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

is pseudomonic for all $\mathcal{X}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, and thus in particular faithful. By Item (g) of Item 5 of Proposition 9.6.1.1.2, this is equivalent to requiring $F$ to be dominant.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: