Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.

  1. Characterisations. The following conditions are equivalent:
    1. The functor $F$ is pseudomonic.
    2. The functor $F$ satisfies the following conditions:
      1. The functor $F$ is faithful, i.e. for each $A,B\in \text{Obj}\webleft (\mathcal{C}\webright )$, the action on morphisms
        \[ F_{A,B} \colon \textup{Hom}_{\mathcal{C}}\webleft (A,B\webright ) \to \textup{Hom}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright ) \]

        of $F$ at $\webleft (A,B\webright )$ is injective.

      2. For each $A,B\in \text{Obj}\webleft (\mathcal{C}\webright )$, the restriction
        \[ F^{\textup{iso}}_{A,B} \colon \textup{Iso}_{\mathcal{C}}\webleft (A,B\webright ) \to \textup{Iso}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright ) \]

        of the action on morphisms of $F$ at $\webleft (A,B\webright )$ to isomorphisms is surjective.

    3. We have an isocomma square of the form
      in $\mathsf{Cats}_{\mathsf{2}}$ up to equivalence.
    4. We have an isocomma square of the form
      in $\mathsf{Cats}_{\mathsf{2}}$ up to equivalence.
    5. For each $\mathcal{X}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the postcomposition[1] functor
      \[ F_{*}\colon \mathsf{Fun}\webleft (\mathcal{X},\mathcal{C}\webright )\to \mathsf{Fun}\webleft (\mathcal{X},\mathcal{D}\webright ) \]

      is pseudomonic.

  2. Conservativity. If $F$ is pseudomonic, then $F$ is conservative.
  3. Essential Injectivity. If $F$ is pseudomonic, then $F$ is essentially injective.

Item 1: Characterisations
Omitted.
Item 2: Conservativity
Omitted.

Item 3: Essential Injectivity
Omitted.


Footnotes

[1] Asking the precomposition functors
\[ F^{*}\colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )\to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]
to be pseudomonic leads to pseudoepic functors; see Item (b) of Item 1 of Proposition 8.6.5.1.2.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: