Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.
-
Characterisations. The following conditions are equivalent:
- The functor $F$ is pseudomonic.
-
The functor $F$ satisfies the following conditions:
-
The functor $F$ is faithful, i.e. for each $A,B\in \text{Obj}\webleft (\mathcal{C}\webright )$, the action on morphisms
\[ F_{A,B} \colon \textup{Hom}_{\mathcal{C}}\webleft (A,B\webright ) \to \textup{Hom}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright ) \]
of $F$ at $\webleft (A,B\webright )$ is injective.
-
For each $A,B\in \text{Obj}\webleft (\mathcal{C}\webright )$, the restriction
\[ F^{\textup{iso}}_{A,B} \colon \textup{Iso}_{\mathcal{C}}\webleft (A,B\webright ) \to \textup{Iso}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright ) \]
of the action on morphisms of $F$ at $\webleft (A,B\webright )$ to isomorphisms is surjective.
-
The functor $F$ is faithful, i.e. for each $A,B\in \text{Obj}\webleft (\mathcal{C}\webright )$, the action on morphisms
- We have an isocomma square of the form in $\mathsf{Cats}_{\mathsf{2}}$ up to equivalence.
- We have an isocomma square of the form in $\mathsf{Cats}_{\mathsf{2}}$ up to equivalence.
-
For each $\mathcal{X}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the postcomposition1 functor
\[ F_{*}\colon \mathsf{Fun}\webleft (\mathcal{X},\mathcal{C}\webright )\to \mathsf{Fun}\webleft (\mathcal{X},\mathcal{D}\webright ) \]
is pseudomonic.
- Conservativity. If $F$ is pseudomonic, then $F$ is conservative.
- Essential Injectivity. If $F$ is pseudomonic, then $F$ is essentially injective.
1Asking the precomposition functors
\[ F^{*}\colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )\to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]
to be pseudomonic leads to pseudoepic functors; see Item (b) of Item 1 of Proposition 9.7.5.1.2.