The category of functors from $\mathcal{C}$ to $\mathcal{D}$1 is the category $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$2 where

  • Objects. The objects of $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$ are functors from $\mathcal{C}$ to $\mathcal{D}$.
  • Morphisms. For each $F,G\in \text{Obj}\webleft (\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )\webright )$, we have

    \[ \textup{Hom}_{\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )}\webleft (F,G\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Nat}\webleft (F,G\webright ). \]

  • Identities. For each $F\in \text{Obj}\webleft (\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )\webright )$, the unit map

    \[ \mathbb {1}^{\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )}_{F} \colon \text{pt}\to \text{Nat}\webleft (F,F\webright ) \]

    of $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$ at $F$ is given by

    \[ \text{id}^{\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )}_{F} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{id}_{F}, \]

    where $\text{id}_{F}\colon F\Longrightarrow F$ is the identity natural transformation of $F$ of Example 9.9.3.1.1.

  • Composition. For each $F,G,H\in \text{Obj}\webleft (\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )\webright )$, the composition map

    \[ \circ ^{\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )}_{F,G,H} \colon \text{Nat}\webleft (G,H\webright ) \times \text{Nat}\webleft (F,G\webright ) \to \text{Nat}\webleft (F,H\webright ) \]

    of $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$ at $\webleft (F,G,H\webright )$ is given by

    \[ \beta \mathbin {{\circ }^{\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )}_{F,G,H}}\alpha \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\beta \circ \alpha , \]

    where $\beta \circ \alpha $ is the vertical composition of $\alpha $ and $\beta $ of Item 1 of Proposition 9.9.4.1.2.


1Further Terminology: Also called the functor category $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$.
2Further Notation: Also written $\mathcal{D}^{\mathcal{C}}$ and $\webleft [\mathcal{C},\mathcal{D}\webright ]$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: