9.10.1 Functor Categories

Let $\mathcal{C}$ be a category and $\mathcal{D}$ be a small category.

The category of functors from $\mathcal{C}$ to $\mathcal{D}$1 is the category $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$2 where

  • Objects. The objects of $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$ are functors from $\mathcal{C}$ to $\mathcal{D}$.
  • Morphisms. For each $F,G\in \text{Obj}\webleft (\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )\webright )$, we have

    \[ \textup{Hom}_{\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )}\webleft (F,G\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Nat}\webleft (F,G\webright ). \]

  • Identities. For each $F\in \text{Obj}\webleft (\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )\webright )$, the unit map

    \[ \mathbb {1}^{\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )}_{F} \colon \text{pt}\to \text{Nat}\webleft (F,F\webright ) \]

    of $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$ at $F$ is given by

    \[ \text{id}^{\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )}_{F} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{id}_{F}, \]

    where $\text{id}_{F}\colon F\Longrightarrow F$ is the identity natural transformation of $F$ of Example 9.9.3.1.1.

  • Composition. For each $F,G,H\in \text{Obj}\webleft (\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )\webright )$, the composition map

    \[ \circ ^{\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )}_{F,G,H} \colon \text{Nat}\webleft (G,H\webright ) \times \text{Nat}\webleft (F,G\webright ) \to \text{Nat}\webleft (F,H\webright ) \]

    of $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$ at $\webleft (F,G,H\webright )$ is given by

    \[ \beta \mathbin {{\circ }^{\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )}_{F,G,H}}\alpha \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\beta \circ \alpha , \]

    where $\beta \circ \alpha $ is the vertical composition of $\alpha $ and $\beta $ of Item 1 of Proposition 9.9.4.1.2.


1Further Terminology: Also called the functor category $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$.
2Further Notation: Also written $\mathcal{D}^{\mathcal{C}}$ and $\webleft [\mathcal{C},\mathcal{D}\webright ]$.

Let $\mathcal{C}$ and $\mathcal{D}$ be categories and let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.

  1. Functoriality. The assignments $\mathcal{C},\mathcal{D},\webleft (\mathcal{C},\mathcal{D}\webright )\mapsto \mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$ define functors
    \[ \begin{array}{ccc} \mathsf{Fun}\webleft (\mathcal{C},-\webright )\colon \mkern -15mu & \mathsf{Cats} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Cats},\\ \mathsf{Fun}\webleft (-,\mathcal{D}\webright )\colon \mkern -15mu & \mathsf{Cats}\mathrlap {{}^{\mathsf{op}}} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Cats},\\ \mathsf{Fun}\webleft (-_{1},-_{2}\webright )\colon \mkern -15mu & \mathsf{Cats}^{\mathsf{op}}\times \mathsf{Cats} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Cats}. \end{array} \]
  2. 2-Functoriality. The assignments $\mathcal{C},\mathcal{D},\webleft (\mathcal{C},\mathcal{D}\webright )\mapsto \mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$ define 2-functors
    \[ \begin{array}{ccc} \mathsf{Fun}\webleft (\mathcal{C},-\webright )\colon \mkern -15mu & \mathsf{Cats}_{\mathsf{2}} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Cats}_{\mathsf{2}},\\ \mathsf{Fun}\webleft (-,\mathcal{D}\webright )\colon \mkern -15mu & \mathsf{Cats}_{\mathsf{2}}^{\mathrlap {\mathsf{op}}} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Cats}_{\mathsf{2}},\\ \mathsf{Fun}\webleft (-_{1},-_{2}\webright )\colon \mkern -15mu & \mathsf{Cats}_{\mathsf{2}}^{\mathsf{op}}\times \mathsf{Cats}_{\mathsf{2}} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Cats}_{\mathsf{2}}. \end{array} \]
  3. Adjointness. We have adjunctions
    witnessed by bijections of sets
    \begin{align*} \textup{Hom}_{\mathsf{Cats}}\webleft (\mathcal{C}\times \mathcal{D},\mathcal{E}\webright ) & \cong \textup{Hom}_{\mathsf{Cats}}\webleft (\mathcal{D},\mathsf{Fun}\webleft (\mathcal{C},\mathcal{E}\webright )\webright ),\\ \textup{Hom}_{\mathsf{Cats}}\webleft (\mathcal{C}\times \mathcal{D},\mathcal{E}\webright ) & \cong \textup{Hom}_{\mathsf{Cats}}\webleft (\mathcal{C},\mathsf{Fun}\webleft (\mathcal{D},\mathcal{E}\webright )\webright ), \end{align*}

    natural in $\mathcal{C},\mathcal{D},\mathcal{E}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$.

  4. 2-Adjointness. We have 2-adjunctions
    witnessed by isomorphisms of categories
    \begin{align*} \mathsf{Fun}\webleft (\mathcal{C}\times \mathcal{D},\mathcal{E}\webright ) & \cong \mathsf{Fun}\webleft (\mathcal{D},\mathsf{Fun}\webleft (\mathcal{C},\mathcal{E}\webright )\webright ),\\ \mathsf{Fun}\webleft (\mathcal{C}\times \mathcal{D},\mathcal{E}\webright ) & \cong \mathsf{Fun}\webleft (\mathcal{C},\mathsf{Fun}\webleft (\mathcal{D},\mathcal{E}\webright )\webright ), \end{align*}

    natural in $\mathcal{C},\mathcal{D},\mathcal{E}\in \text{Obj}\webleft (\mathsf{Cats}_{\mathsf{2}}\webright )$.

  5. Interaction With Punctual Categories. We have a canonical isomorphism of categories
    \[ \mathsf{Fun}\webleft (\mathsf{pt},\mathcal{C}\webright ) \cong \mathcal{C}, \]

    natural in $\mathcal{C}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$.

  6. Objectwise Computation of Co/Limits. Let
    \[ D \colon \mathcal{I} \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright ) \]

    be a diagram in $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$. We have isomorphisms

    \begin{align*} \operatorname*{\text{lim}}\webleft (D\webright )_{A} & \cong \operatorname*{\text{lim}}_{i\in \mathcal{I}}\webleft (D_{i}\webleft (A\webright )\webright ),\\ \operatorname*{\text{colim}}\webleft (D\webright )_{A} & \cong \operatorname*{\text{colim}}_{i\in \mathcal{I}}\webleft (D_{i}\webleft (A\webright )\webright ), \end{align*}

    naturally in $A\in \text{Obj}\webleft (\mathcal{C}\webright )$.

  7. Interaction With Co/Completeness. If $\mathcal{E}$ is co/complete, then so is $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{E}\webright )$.
  8. Monomorphisms and Epimorphisms. Let $\alpha \colon F\Longrightarrow G$ be a morphism of $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$. The following conditions are equivalent:
    1. The natural transformation
      \[ \alpha \colon F \Longrightarrow G \]

      is a monomorphism (resp. epimorphism) in $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$.

    2. For each $A\in \text{Obj}\webleft (\mathcal{C}\webright )$, the morphism
      \[ \alpha _{A} \colon F_{A} \to G_{A} \]

      is a monomorphism (resp. epimorphism) in $\mathcal{D}$.

Item 1: Functoriality
Omitted.
Item 2: 2-Functoriality
Omitted.
Item 3: Adjointness
Omitted.
Item 4: 2-Adjointness
Omitted.
Item 5: Interaction With Punctual Categories
Omitted.
Item 6: Objectwise Computation of Co/Limits
Omitted.
Item 7: Interaction With Co/Completeness
This follows from .
Item 8: Monomorphisms and Epimorphisms
Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: