2.3.7 Binary Unions

Let $A$ and $B$ be sets.

The union[1] of $A$ and $B$ is the set $A\cup B$ defined by

\[ A\cup B \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{z\in \webleft\{ A,B\webright\} }z. \]

Let $X$ be a set.

  1. Functoriality. The assignments $U,V,\webleft (U,V\webright )\mapsto U\cup V$ define functors
    \begin{gather*} \begin{aligned} U\cup - & \colon \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ) \to \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\\ -\cup V & \colon \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ) \to \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\\ \end{aligned}\\ -_{1}\cup -_{2} \colon \webleft (\mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (X\webright ),\subset \times \subset \webright ) \to \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ), \end{gather*}

    where $-_{1}\cup -_{2}$ is the functor where

    • Action on Objects. For each $\webleft (U,V\webright )\in \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (X\webright )$, we have

      \[ \webleft [-_{1}\cup -_{2}\webright ]\webleft (U,V\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U\cup V. \]

    • Action on Morphisms. For each pair of morphisms

      \begin{align*} \iota _{U} & \colon U\hookrightarrow U',\\ \iota _{V} & \colon V\hookrightarrow V’ \end{align*}

      of $\mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (X\webright )$, the image

      \[ \iota _{U}\cup \iota _{V}\colon U\cup V\hookrightarrow U'\cup V' \]

      of $\webleft (\iota _{U},\iota _{V}\webright )$ by $\cup $ is the inclusion

      \[ U\cup V\subset U'\cup V' \]

      i.e. where we have

      • If $U\subset U'$ and $V\subset V'$, then $U\cup V\subset U'\cup V'$.
    and where $U\cup -$ and $-\cup V$ are the partial functors of $-_{1}\cup -_{2}$ at $U,V\in \mathcal{P}\webleft (X\webright )$.

  2. Via Intersections and Symmetric Differences. We have an equality of sets
    \[ U\cup V=\webleft (U\mathbin {\triangle }V\webright )\mathbin {\triangle }\webleft (U\cap V\webright ) \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

  3. Associativity. We have an equality of sets
    \[ \webleft (U\cup V\webright )\cup W = U\cup \webleft (V\cup W\webright ) \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  4. Unitality. We have equalities of sets
    \begin{align*} U\cup \emptyset & = U,\\ \emptyset \cup U & = U \end{align*}

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U\in \mathcal{P}\webleft (X\webright )$.

  5. Commutativity. We have an equality of sets
    \[ U\cup V = V\cup U \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

  6. Idempotency. We have an equality of sets
    \[ U\cup U=U \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U\in \mathcal{P}\webleft (X\webright )$.

  7. Distributivity Over Intersections. We have equalities of sets
    \begin{align*} U\cup \webleft (V\cap W\webright ) & = \webleft (U\cup V\webright )\cap \webleft (U\cup W\webright ),\\ \webleft (U\cap V\webright )\cup W & = \webleft (U\cup W\webright )\cap \webleft (V\cup W\webright ) \end{align*}

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  8. Interaction With Characteristic Functions I. We have
    \[ \chi _{U\cup V}=\operatorname*{\text{max}}\webleft (\chi _{U},\chi _{V}\webright ) \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

  9. Interaction With Characteristic Functions II. We have
    \[ \chi _{U\cup V}=\chi _{U}+\chi _{V}-\chi _{U\cap V} \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

  10. Interaction With Powersets and Semirings. The quintuple $\webleft (\mathcal{P}\webleft (X\webright ),\cup ,\cap ,\emptyset ,X\webright )$ is an idempotent commutative semiring.

Item 1: Functoriality
See [Proof Wiki, Set Union Preserves Subsets].
Item 2: Via Intersections and Symmetric Differences
See [Proof Wiki, Union As Symmetric Difference With Intersection].
Item 3: Associativity
See [Proof Wiki, Union Is Associative].
Item 4: Unitality
This follows from [Proof Wiki, Union With Empty Set] and Item 5.
Item 5: Commutativity
See [Proof Wiki, Union Is Commutative].
Item 6: Idempotency
See [Proof Wiki, Set Union Is Idempotent].
Item 7: Distributivity Over Intersections
See [Proof Wiki, Union Distributes Over Intersection].
Item 8: Interaction With Characteristic Functions I
See [Proof Wiki, Characteristic Function Of Union].
Item 9: Interaction With Characteristic Functions II
See [Proof Wiki, Characteristic Function Of Union].
Item 10: Interaction With Powersets and Semirings
This follows from Item 3, Item 4, Item 5, and Item 6 and Item 3, Item 4, Item 5, Item 7, and Item 8 of Proposition 2.3.9.1.2.


Footnotes

[1] Further Terminology: Also called the binary union of $A$ and $B$, for emphasis.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: