2.3.8 Binary Unions

Let $X$ be a set and let $U,V\in \mathcal{P}\webleft (X\webright )$.

The union of $U$ and $V$ is the set $U\cup V$ defined by

\begin{align*} U\cup V & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{z\in \webleft\{ U,V\webright\} }z\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ \text{$x\in U$ or $x\in V$}\webright\} . \end{align*}

Let $X$ be a set.

  1. Functoriality. The assignments $U,V,\webleft (U,V\webright )\mapsto U\cup V$ define functors
    \[ \begin{array}{ccc} U\cup -\colon \mkern -15mu & \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ) \mkern -17.5mu& {}\mathbin {\to }\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\\ -\cup V\colon \mkern -15mu & \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ) \mkern -17.5mu& {}\mathbin {\to }\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\\ -_{1}\cup -_{2}\colon \mkern -15mu & \webleft (\mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (X\webright ),\subset \times \subset \webright ) \mkern -17.5mu& {}\mathbin {\to }\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ). \end{array} \]

    In particular, the following statements hold for each $U,V,A,B\in \mathcal{P}\webleft (X\webright )$:

    1. If $U\subset A$, then $U\cup V\subset A\cup V$.
    2. If $V\subset B$, then $U\cup V\subset U\cup B$.
    3. If $U\subset A$ and $V\subset B$, then $U\cup V\subset A\cup B$.
  2. Associativity. The diagram

    commutes, i.e. we have an equality of sets

    \[ \webleft (U\cup V\webright )\cup W = U\cup \webleft (V\cup W\webright ) \]

    for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  3. Unitality. The diagrams
    commute, i.e. we have equalities of sets
    \begin{align*} \text{Ø}\cup U & = U,\\ U\cup \text{Ø}& = U \end{align*}

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  4. Commutativity. The diagram

    commutes, i.e. we have an equality of sets

    \[ U\cup V = V\cup U \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  5. Annihilation With $X$. The diagrams
    commute, i.e. we have equalities of sets
    \begin{align*} U\cup X & = X,\\ X\cup V & = X \end{align*}

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  6. Distributivity of Unions Over Intersections. The diagrams
    commute, i.e. we have equalities of sets
    \begin{align*} U\cup \webleft (V\cap W\webright ) & = \webleft (U\cup V\webright )\cap \webleft (U\cup W\webright ),\\ \webleft (U\cap V\webright )\cup W & = \webleft (U\cup W\webright )\cap \webleft (V\cup W\webright ) \end{align*}

    for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  7. Distributivity of Intersections Over Unions. The diagrams
    commute, i.e. we have equalities of sets
    \begin{align*} U\cap \webleft (V\cup W\webright ) & = \webleft (U\cap V\webright )\cup \webleft (U\cap W\webright ),\\ \webleft (U\cup V\webright )\cap W & = \webleft (U\cap W\webright )\cup \webleft (V\cap W\webright ) \end{align*}

    for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  8. Idempotency. The diagram

    commutes, i.e. we have an equality of sets

    \[ U\cup U=U \]

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  9. Via Intersections and Symmetric Differences. The diagram

    commutes, i.e. we have an equality of sets

    \[ U\cup V=\webleft (U\mathbin {\triangle }V\webright )\mathbin {\triangle }\webleft (U\cap V\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  10. Interaction With Characteristic Functions I. We have
    \[ \chi _{U\cup V}=\operatorname*{\text{max}}\webleft (\chi _{U},\chi _{V}\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  11. Interaction With Characteristic Functions II. We have
    \[ \chi _{U\cup V}=\chi _{U}+\chi _{V}-\chi _{U\cap V} \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  12. Interaction With Direct Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have

    \[ f_{*}\webleft (U\cup V\webright )=f_{*}\webleft (U\webright )\cup f_{*}\webleft (V\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  13. Interaction With Inverse Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have

    \[ f^{-1}\webleft (U\cup V\webright )=f^{-1}\webleft (U\webright )\cup f^{-1}\webleft (V\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (Y\webright )$.

  14. Interaction With Direct Images With Compact Support. Let $f\colon X\to Y$ be a function. We have a natural transformation

    with components

    \[ f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright )\subset f_{!}\webleft (U\cup V\webright ) \]

    indexed by $U,V\in \mathcal{P}\webleft (X\webright )$.

  15. Interaction With Powersets and Semirings. The quintuple $\webleft (\mathcal{P}\webleft (X\webright ),\cup ,\cap ,\text{Ø},X\webright )$ is an idempotent commutative semiring.

Item 1: Functoriality
See [Proof Wiki, Set Union Preserves Subsets].
Item 2: Associativity
See [Proof Wiki, Union Is Associative].
Item 3: Unitality
This follows from [Proof Wiki, Union With Empty Set] and Item 4.
Item 4: Commutativity
See [Proof Wiki, Union Is Commutative].
Item 5: Annihilation With $X$
We have
\begin{align*} U\cup X & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ \text{$x\in U$ or $x\in X$}\webright\} \\ & = \webleft\{ x\in X\ \middle |\ x\in X\webright\} ,\\ & = X \end{align*}

and

\begin{align*} X\cup V & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ \text{$x\in X$ or $x\in V$}\webright\} \\ & = \webleft\{ x\in X\ \middle |\ x\in X\webright\} \\ & = X. \end{align*}

This finishes the proof.

Item 6: Distributivity of Unions Over Intersections
See [Proof Wiki, Union Distributes Over Intersection].
Item 7: Distributivity of Intersections Over Unions
See [Proof Wiki, Set Intersection Distributes Over Union].
Item 8: Idempotency
See [Proof Wiki, Set Union Is Idempotent].
Item 9: Via Intersections and Symmetric Differences
See [Proof Wiki, Union As Symmetric Difference With Intersection].
Item 10: Interaction With Characteristic Functions I
See [Proof Wiki, Characteristic Function Of Union].
Item 11: Interaction With Characteristic Functions II
See [Proof Wiki, Characteristic Function Of Union].
Item 12: Interaction With Direct Images
See [Proof Wiki, Image of Union Under Mapping].
Item 13: Interaction With Inverse Images
See [Proof Wiki, Preimage of Union Under Mapping].
Item 14: Interaction With Direct Images With Compact Support
This is a repetition of Item 5 of Proposition 2.6.3.1.6 and is proved there.
Item 15: Interaction With Powersets and Semirings
This follows from Item 2, Item 3, Item 4, and Item 8 of this propostition and Item 3, Item 4, Item 5, Item 8, and Item 6 of Proposition 2.3.9.1.2.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: