2.3.9 Binary Intersections

Let $X$ be a set and let $U,V\in \mathcal{P}\webleft (X\webright )$.

The intersection of $U$ and $V$ is the set $U\cap V$ defined by

\begin{align*} U\cap V & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{z\in \webleft\{ U,V\webright\} }z\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ \text{$x\in U$ or $x\in V$}\webright\} . \end{align*}

Let $X$ be a set.

  1. Functoriality. The assignments $U,V,\webleft (U,V\webright )\mapsto U\cap V$ define functors
    \[ \begin{array}{ccc} U\cap -\colon \mkern -15mu & \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ) \mkern -17.5mu& {}\mathbin {\to }\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\\ -\cap V\colon \mkern -15mu & \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ) \mkern -17.5mu& {}\mathbin {\to }\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\\ -_{1}\cap -_{2}\colon \mkern -15mu & \webleft (\mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (X\webright ),\subset \times \subset \webright ) \mkern -17.5mu& {}\mathbin {\to }\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ). \end{array} \]

    In particular, the following statements hold for each $U,V,A,B\in \mathcal{P}\webleft (X\webright )$:

    1. If $U\subset A$, then $U\cap V\subset A\cap V$.
    2. If $V\subset B$, then $U\cap V\subset U\cap B$.
    3. If $U\subset A$ and $V\subset B$, then $U\cap V\subset A\cap B$.
  2. Adjointness. We have adjunctions
    witnessed by bijections
    \begin{align*} \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U\cap V,W\webright ) & \cong \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,\webleft [V,W\webright ]_{X}\webright ),\\ \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U\cap V,W\webright ) & \cong \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (V,\webleft [U,W\webright ]_{X}\webright ), \end{align*}

    natural in $U,V,W\in \mathcal{P}\webleft (X\webright )$, where

    \[ \webleft [-_{1},-_{2}\webright ]_{X}\colon \mathcal{P}\webleft (X\webright )\mkern -0.0mu^{\mathsf{op}}\times \mathcal{P}\webleft (X\webright ) \to \mathcal{P}\webleft (X\webright ) \]

    is the bifunctor of Section 2.4.7. In particular, the following statements hold for each $U,V,W\in \mathcal{P}\webleft (X\webright )$:

    1. The following conditions are equivalent:
      1. We have $U\cap V\subset W$.
      2. We have $U\subset \webleft [V,W\webright ]_{X}$.
    2. The following conditions are equivalent:
      1. We have $U\cap V\subset W$.
      2. We have $V\subset \webleft [U,W\webright ]_{X}$.
  3. Associativity. The diagram

    commutes, i.e. we have an equality of sets

    \[ \webleft (U\cap V\webright )\cap W=U\cap \webleft (V\cap W\webright ) \]

    for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  4. Unitality. The diagrams
    commute, i.e. we have equalities of sets
    \begin{align*} X\cap U & = U,\\ U\cap X & = U \end{align*}

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  5. Commutativity. The diagram

    commutes, i.e. we have an equality of sets

    \[ U\cap V= V\cap U \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  6. Annihilation With the Empty Set. The diagrams
    commute, i.e. we have equalities of sets
    \begin{align*} \text{Ø}\cap X & = \text{Ø},\\ X\cap \text{Ø}& = \text{Ø}\end{align*}

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  7. Distributivity of Unions Over Intersections. The diagrams
    commute, i.e. we have equalities of sets
    \begin{align*} U\cup \webleft (V\cap W\webright ) & = \webleft (U\cup V\webright )\cap \webleft (U\cup W\webright ),\\ \webleft (U\cap V\webright )\cup W & = \webleft (U\cup W\webright )\cap \webleft (V\cup W\webright ) \end{align*}

    for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  8. Distributivity of Intersections Over Unions. The diagrams
    commute, i.e. we have equalities of sets
    \begin{align*} U\cap \webleft (V\cup W\webright ) & = \webleft (U\cap V\webright )\cup \webleft (U\cap W\webright ),\\ \webleft (U\cup V\webright )\cap W & = \webleft (U\cap W\webright )\cup \webleft (V\cap W\webright ) \end{align*}

    for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  9. Idempotency. The diagram

    commutes, i.e. we have an equality of sets

    \[ U\cap U=U \]

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  10. Interaction With Characteristic Functions I. We have
    \[ \chi _{U\cap V}=\chi _{U}\chi _{V} \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  11. Interaction With Characteristic Functions II. We have
    \[ \chi _{U\cap V}=\operatorname*{\text{min}}\webleft (\chi _{U},\chi _{V}\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  12. Interaction With Direct Images. Let $f\colon X\to Y$ be a function. We have a natural transformation

    with components

    \[ f_{*}\webleft (U\cap V\webright )\subset f_{*}\webleft (U\webright )\cap f_{*}\webleft (V\webright ) \]

    indexed by $U,V\in \mathcal{P}\webleft (X\webright )$.

  13. Interaction With Inverse Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have

    \[ f^{-1}\webleft (U\cap V\webright )=f^{-1}\webleft (U\webright )\cap f^{-1}\webleft (V\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (Y\webright )$.

  14. Interaction With Direct Images With Compact Support. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have

    \[ f_{!}\webleft (U\webright )\cap f_{!}\webleft (V\webright )=f_{!}\webleft (U\cap V\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  15. Interaction With Powersets and Monoids With Zero. The quadruple $\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\text{Ø}\webright ),\cap ,X\webright )$ is a commutative monoid with zero.
  16. Interaction With Powersets and Semirings. The quintuple $\webleft (\mathcal{P}\webleft (X\webright ),\cup ,\cap ,\text{Ø},X\webright )$ is an idempotent commutative semiring.

Item 1: Functoriality
See [Proof Wiki, Set Intersection Preserves Subsets].
Item 2: Adjointness
See [MSE 267469].
Item 3: Associativity
See [Proof Wiki, Intersection Is Associative].
Item 4: Unitality
This follows from [Proof Wiki, Intersection With Subset Is Subset] and Item 5.
Item 5: Commutativity
See [Proof Wiki, Intersection Is Commutative].
Item 6: Annihilation With the Empty Set
This follows from [Proof Wiki, Intersection With Empty Set] and Item 5.
Item 7: Distributivity of Unions Over Intersections
See [Proof Wiki, Union Distributes Over Intersection].
Item 8: Distributivity of Intersections Over Unions
See [Proof Wiki, Set Intersection Distributes Over Union].
Item 9: Idempotency
See [Proof Wiki, Set Intersection Is Idempotent].
Item 10: Interaction With Characteristic Functions I
See [Proof Wiki, Characteristic Function Of Intersection].
Item 11: Interaction With Characteristic Functions II
See [Proof Wiki, Characteristic Function Of Intersection].
Item 12: Interaction With Direct Images
See [Proof Wiki, Image of Intersection Under Mapping].
Item 13: Interaction With Inverse Images
See [Proof Wiki, Preimage of Intersection Under Mapping].
Item 14: Interaction With Direct Images With Compact Support
This is a repetition of Item 6 of Proposition 2.6.3.1.6 and is proved there.
Item 15: Interaction With Powersets and Monoids With Zero
This follows from Item 3, Item 4, Item 5, and Item 6.
Item 16: Interaction With Powersets and Semirings
This follows from Item 2, Item 3, Item 4, and Item 8 and Item 3, Item 4, Item 5, Item 8, and Item 6 of Proposition 2.3.9.1.2.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: