Let $\mathcal{C}$ and $\mathcal{D}$ be categories.
A functor $F\colon \mathcal{C}\to \mathcal{D}$ is full if, for each $A,B\in \text{Obj}\webleft (\mathcal{C}\webright )$, the action on morphisms
\[ F_{A,B} \colon \textup{Hom}_{\mathcal{C}}\webleft (A,B\webright ) \to \textup{Hom}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright ) \]
of $F$ at $\webleft (A,B\webright )$ is surjective.
Item 1: Interaction With Composition
Since the map
\[ \webleft (G\circ F\webright )_{A,B} \colon \textup{Hom}_{\mathcal{C}}\webleft (A,B\webright ) \to \textup{Hom}_{\mathcal{D}}\webleft (G_{F_{A}},G_{F_{B}}\webright ), \]
defined as the composition
\[ \textup{Hom}_{\mathcal{C}}\webleft (A,B\webright )\xrightarrow {F_{A,B}}\textup{Hom}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright )\xrightarrow {G_{F\webleft (A\webright ),F\webleft (B\webright )}}\textup{Hom}_{\mathcal{D}}\webleft (G_{F_{A}},G_{F_{B}}\webright ), \]
is a composition of surjective functions, it follows from that it is also surjective. Therefore $G\circ F$ is full.
Item 2: Interaction With Postcomposition I
We follow the proof (completely formalised in cubical Agda!) given by Naïm Camille Favier in [Favier, Postcompose Not Full]. Let $\mathcal{C}$ be the category where: - Objects. We have $\text{Obj}\webleft (\mathcal{C}\webright )=\webleft\{ A,B\webright\} $.
- Morphisms. We have
\begin{align*} \textup{Hom}_{\mathcal{C}}\webleft (A,A\webright ) & = \webleft\{ e_{A},\text{id}_{A}\webright\} ,\\ \textup{Hom}_{\mathcal{C}}\webleft (B,B\webright ) & = \webleft\{ e_{B},\text{id}_{B}\webright\} ,\\ \textup{Hom}_{\mathcal{C}}\webleft (A,B\webright ) & = \webleft\{ f,g\webright\} ,\\ \textup{Hom}_{\mathcal{C}}\webleft (B,A\webright ) & = \text{Ø}. \end{align*}
- Composition. The nontrivial compositions in $\mathcal{C}$ are the following:
\[ \begin{aligned} e_{A}\circ e_{A} & = \text{id}_{A},\\ e_{B}\circ e_{B} & = \text{id}_{B}, \end{aligned} \quad \begin{aligned} f\circ e_{A} & = g,\\ g\circ e_{A} & = f, \end{aligned} \quad \begin{aligned} e_{B}\circ f & = f,\\ e_{B}\circ g & = g. \end{aligned} \]
We may picture $\mathcal{C}$ as follows:
Next, let $\mathcal{D}$ be the walking arrow category $\mathbb {1}$ of Definition 9.2.5.1.1 and let $F\colon \mathcal{C}\to \mathbb {1}$ be the functor given on objects by
\begin{align*} F\webleft (A\webright ) & = 0,\\ F\webleft (B\webright ) & = 1 \end{align*}
and on non-identity morphisms by
\[ \begin{aligned} F\webleft (f\webright ) & = f_{01},\\ F\webleft (g\webright ) & = f_{01}, \end{aligned} \quad \begin{aligned} F\webleft (e_{A}\webright ) & = \text{id}_{0},\\ F\webleft (e_{B}\webright ) & = \text{id}_{1}. \end{aligned} \]
Finally, let $\mathcal{X}=\mathsf{B}\mathbb {Z}_{/2}$ be the walking involution and let $\iota _{A},\iota _{B}\colon \mathsf{B}\mathbb {Z}_{/2}\rightrightarrows \mathcal{C}$ be the inclusion functors from $\mathsf{B}\mathbb {Z}_{/2}$ to $\mathcal{C}$ with
\begin{align*} \iota _{A}\webleft (\bullet \webright ) & = A,\\ \iota _{B}\webleft (\bullet \webright ) & = B. \end{align*}
Since every morphism in $\mathbb {1}$ has a preimage in $\mathcal{C}$ by $F$, the functor $F$ is full. Now, for $F_{*}$ to be full, the map
would need to be surjective. However, as we will show next, we have
\begin{gather*} \text{Nat}\webleft (\iota _{A},\iota _{B}\webright ) = \text{Ø},\\ \text{Nat}\webleft (F\circ \iota _{A},F\circ \iota _{B}\webright ) \cong \text{pt}, \end{gather*}
so this is impossible:
- Proof of $\text{Nat}\webleft (\iota _{A},\iota _{B}\webright )=\text{Ø}$: A natural transformation $\alpha \colon \iota _{A}\Rightarrow \iota _{B}$ consists of a morphism
\[ \alpha \colon \underbrace{\iota _{A}\webleft (\bullet \webright )}_{=A}\to \underbrace{\iota _{B}\webleft (\bullet \webright )}_{=B} \]
in $\mathcal{C}$ making the diagram
commute for each $e\in \textup{Hom}_{\mathsf{B}\mathbb {Z}_{/2}}\webleft (\bullet ,\bullet \webright )\cong \mathbb {Z}_{/2}$. We have two cases:
-
If $\alpha =f$, the naturality diagram for the unique nonidentity element of $\mathbb {Z}_{/2}$ is given by
However, $e_{B}\circ f=f$ and $f\circ e_{A}=g$, so this diagram does not commute.
-
If $\alpha =g$, the naturality diagram for the unique nonidentity element of $\mathbb {Z}_{/2}$ is given by
However, $e_{B}\circ g=g$ and $g\circ e_{A}=f$, so this diagram does not commute.
As a result, there are no natural transformations from $\iota _{A}$ to $\iota _{B}$.
- Proof of $\text{Nat}\webleft (F\circ \iota _{A},F\circ \iota _{B}\webright )\cong \text{pt}$: A natural transformation
\[ \beta \colon F\circ \iota _{A}\Rightarrow F\circ \iota _{B} \]
consists of a morphism
\[ \beta \colon \underbrace{\webleft [F\circ \iota _{A}\webright ]\webleft (\bullet \webright )}_{=0}\to \underbrace{\webleft [F\circ \iota _{B}\webright ]\webleft (\bullet \webright )}_{=1} \]
in $\mathbb {1}$ making the diagram
commute for each $e\in \textup{Hom}_{\mathsf{B}\mathbb {Z}_{/2}}\webleft (\bullet ,\bullet \webright )\cong \mathbb {Z}_{/2}$. Since the only morphism from $0$ to $1$ in $\mathbb {1}$ is $f_{01}$, we must have $\beta =f_{01}$ if such a transformation were to exist, and in fact it indeed does, as in this case the naturality diagram above becomes
for each $e\in \mathbb {Z}_{/2}$, and this diagram indeed commutes, making $\beta $ into a natural transformation.
This finishes the proof.
Item 3: Interaction With Postcomposition II
Taking $\mathcal{X}=\mathsf{pt}$, it follows by assumption that the functor
\[ F_{*}\colon \mathsf{Fun}\webleft (\mathsf{pt},\mathcal{C}\webright )\to \mathsf{Fun}\webleft (\mathsf{pt},\mathcal{D}\webright ) \]
is full. However, by Item 5 of Proposition 9.10.1.1.2, we have isomorphisms of categories
\begin{align*} \mathsf{Fun}\webleft (\mathsf{pt},\mathcal{C}\webright ) & \cong \mathcal{C},\\ \mathsf{Fun}\webleft (\mathsf{pt},\mathcal{D}\webright ) & \cong \mathcal{D} \end{align*}
and the diagram
commutes. It then follows from Item 1 that $F$ is full.
Item 4: Interaction With Precomposition I
Omitted.
Item 5: Interaction With Precomposition II
See p. 47 of [Baez–Shulman, Lectures on $n$-Categories and Cohomology].
Item 6: Interaction With Precomposition III
Omitted, but see https://unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheory.precomp_fully_faithful.html for a formalised proof.
Item 7: Interaction With Precomposition IV
We claim Item (a), Item (b), Item (c), Item (d), and Item (e) are equivalent: This finishes the proof.