9.6.3 Fully Faithful Functors

Let $\mathcal{C}$ and $\mathcal{D}$ be categories.

A functor $F\colon \mathcal{C}\to \mathcal{D}$ is fully faithful if $F$ is full and faithful, i.e. if, for each $A,B\in \text{Obj}\webleft (\mathcal{C}\webright )$, the action on morphisms

\[ F_{A,B} \colon \textup{Hom}_{\mathcal{C}}\webleft (A,B\webright ) \to \textup{Hom}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright ) \]

of $F$ at $\webleft (A,B\webright )$ is bijective.

Let $F\colon \mathcal{C}\to \mathcal{D}$ and $G\colon \mathcal{D}\to \mathcal{E}$ be functors.

  1. Characterisations. The following conditions are equivalent:
    1. The functor $F$ is fully faithful.
    2. We have a pullback square
      in $\mathsf{Cats}$.
  2. Interaction With Composition. If $F$ and $G$ are fully faithful, then so is $G\circ F$.
  3. Conservativity. If $F$ is fully faithful, then $F$ is conservative.
  4. Essential Injectivity. If $F$ is fully faithful, then $F$ is essentially injective.
  5. Interaction With Co/Limits. If $F$ is fully faithful, then $F$ reflects co/limits.
  6. Interaction With Postcomposition. The following conditions are equivalent:
    1. The functor $F\colon \mathcal{C}\to \mathcal{D}$ is fully faithful.
    2. For each $\mathcal{X}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the postcomposition functor
      \[ F_{*} \colon \mathsf{Fun}\webleft (\mathcal{X},\mathcal{C}\webright ) \to \mathsf{Fun}\webleft (\mathcal{X},\mathcal{D}\webright ) \]

      is fully faithful.

    3. The functor $F\colon \mathcal{C}\to \mathcal{D}$ is a representably fully faithful morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 11: Graphs, Definition 11.1.3.1.1.
  7. Interaction With Precomposition I. If $F$ is fully faithful, then the precomposition functor
    \[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

    can fail to be fully faithful.

  8. Interaction With Precomposition II. If the precomposition functor
    \[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

    is fully faithful, then $F$ can fail to be fully faithful (and in fact it can also fail to be either full or faithful).

  9. Interaction With Precomposition III. If $F$ is essentially surjective and full, then the precomposition functor
    \[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

    is fully faithful.

  10. Interaction With Precomposition IV. The following conditions are equivalent:
    1. For each $\mathcal{X}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the precomposition functor
      \[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

      is fully faithful.

    2. The precomposition functor
      \[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathsf{Sets}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathsf{Sets}\webright ) \]

      is fully faithful.

    3. The functor
      \[ \text{Lan}_{F}\colon \mathsf{Fun}\webleft (\mathcal{C},\mathsf{Sets}\webright ) \to \mathsf{Fun}\webleft (\mathcal{D},\mathsf{Sets}\webright ) \]

      is fully faithful.

    4. The functor $F$ is a corepresentably fully faithful morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 11: Graphs, Definition 11.2.3.1.1.
    5. The functor $F$ is absolutely dense.
    6. The components
      \[ \eta _{G}\colon G\Longrightarrow \text{Ran}_{F}\webleft (G\circ F\webright ) \]

      of the unit

      \[ \eta \colon \text{id}_{\mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )}\Longrightarrow \text{Ran}_{F}\circ F^{*} \]

      of the adjunction $F^{*}\dashv \text{Ran}_{F}$ are all isomorphisms.

    7. The components
      \[ \epsilon _{G}\colon \text{Lan}_{F}\webleft (G\circ F\webright )\Longrightarrow G \]

      of the counit

      \[ \epsilon \colon \text{Lan}_{F}\circ F^{*}\Longrightarrow \text{id}_{\mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )} \]

      of the adjunction $\text{Lan}_{F}\dashv F^{*}$ are all isomorphisms.

    8. The natural transformation
      \[ \alpha \colon \text{Lan}_{h_{F}}\webleft (h^{F}\webright )\Longrightarrow h \]

      with components

      \[ \alpha _{B',B}\colon \int ^{A\in \mathcal{C}}h^{B'}_{F_{A}}\times h^{F_{A}}_{B}\to h^{B'}_{B} \]

      given by

      \[ \alpha _{B',B}\webleft (\webleft [\webleft (\phi ,\psi \webright )\webright ]\webright )=\psi \circ \phi \]

      is a natural isomorphism.

    9. For each $B\in \text{Obj}\webleft (\mathcal{D}\webright )$, there exist:
      • An object $A_{B}$ of $\mathcal{C}$;
      • A morphism $s_{B}\colon B\to F\webleft (A_{B}\webright )$ of $\mathcal{D}$;
      • A morphism $r_{B}\colon F\webleft (A_{B}\webright )\to B$ of $\mathcal{D}$;
      satisfying the following conditions:
      1. The triple $\webleft (F\webleft (A_{B}\webright ),r_{B},s_{B}\webright )$ is a retract of $B$, i.e. we have $r_{B}\circ s_{B}=\text{id}_{B}$.
      2. For each morphism $f\colon B'\to B$ of $\mathcal{D}$, we have
        \[ \webleft [\webleft (A_{B},s_{B'},f\circ r_{B'}\webright )\webright ]=\webleft [\webleft (A_{B},s_{B}\circ f,r_{B}\webright )\webright ] \]

        in $\int ^{A\in \mathcal{C}}h^{B'}_{F_{A}}\times h^{F_{A}}_{B}$.

Item 1: Characterisations
Omitted.
Item 2: Interaction With Composition
Since the map

\[ \webleft (G\circ F\webright )_{A,B} \colon \textup{Hom}_{\mathcal{C}}\webleft (A,B\webright ) \to \textup{Hom}_{\mathcal{D}}\webleft (G_{F_{A}},G_{F_{B}}\webright ), \]

defined as the composition

\[ \textup{Hom}_{\mathcal{C}}\webleft (A,B\webright )\xrightarrow {F_{A,B}}\textup{Hom}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright )\xrightarrow {G_{F\webleft (A\webright ),F\webleft (B\webright )}}\textup{Hom}_{\mathcal{D}}\webleft (G_{F_{A}},G_{F_{B}}\webright ), \]

is a composition of bijective functions, it follows from that it is also bijective. Therefore $G\circ F$ is fully faithful.

Item 3: Conservativity
This is a repetition of Item 2 of Proposition 9.6.4.1.2, and is proved there.
Item 4: Essential Injectivity
Omitted.
Item 5: Interaction With Co/Limits
Omitted.
Item 6: Interaction With Postcomposition
This follows from Item 2 of Proposition 9.6.1.1.2 and of Proposition 9.6.2.1.2.
Item 7: Interaction With Precomposition I
See [MSE 733161] for an example of a fully faithful functor whose precomposition with which fails to be full.
Item 8: Interaction With Precomposition II
See Item 3 of [MSE 749304].
Item 9: Interaction With Precomposition III
Omitted, but see https://unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheory.precomp_fully_faithful.html for a formalised proof.
Item 10: Interaction With Precomposition IV
We claim Item (a), Item (b), Item (c), Item (d), Item (e), Item (f), Item (g), Item (h), and Item (i) are equivalent: This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: