of $\mathsf{Sets}_{*}$ admits an internal Hom $\webleft [-_{1},-_{2}\webright ]_{\mathsf{Sets}_{*}}$.
The Unit Object Is $S^{0}$. We have $\mathbb {1}_{\mathsf{Sets}_{*}}\cong S^{0}$.
More precisely, the full subcategory of the category $\mathcal{M}^{\mathrm{cld}}_{\mathbb {E}_{\infty }}\webleft (\mathsf{Sets}_{*}\webright )$ of spanned by the closed symmetric monoidal categories $\webleft(\phantom{\mathrlap {\lambda ^{\mathsf{Sets}_{*}}}}\mathsf{Sets}_{*}\right.$, $\otimes _{\mathsf{Sets}_{*}}$, $\webleft [-_{1},-_{2}\webright ]_{\mathsf{Sets}_{*}}$, $\mathbb {1}_{\mathsf{Sets}_{*}}$, $\lambda ^{\mathsf{Sets}_{*}}$, $\rho ^{\mathsf{Sets}_{*}}$, $\left.\sigma ^{\mathsf{Sets}_{*}}\webright)$ satisfying Item 1 and Item 2 is contractible (i.e. equivalent to the punctual category).
Let $\webleft (\mathsf{Sets}_{*},\otimes _{\mathsf{Sets}_{*}},\webleft [-_{1},-_{2}\webright ]_{\mathsf{Sets}_{*}},\mathbb {1}_{\mathsf{Sets}_{*}},\lambda ',\rho ',\sigma '\webright )$ be a closed symmetric monoidal category satisfying Item 1 and Item 2. We need to show that the identity functor
for the component of this isomorphism at $\webleft (X,Y\webright )$.
Constructing an Isomorphism $\mathord {\otimes _{\mathsf{Sets}_{*}}}\cong \mathord {\wedge }$
Since $\otimes _{\mathsf{Sets}_{*}}$ is adjoint in each variable to $\webleft [-_{1},-_{2}\webright ]_{\mathsf{Sets}_{*}}$ by assumption and $\wedge $ is adjoint in each variable to $\mathsf{Sets}_{*}\webleft (-_{1},-_{2}\webright )$ by Chapter 2: Constructions With Sets, Item 2 of Proposition 2.3.5.1.2, uniqueness of adjoints () gives us natural isomorphisms
naturally in $Y\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, where we have used that $S^{0}$ is the monoidal unit for $\otimes _{\mathsf{Sets}_{*}}$. Thus $X\otimes _{\mathsf{Sets}_{*}}-\cong X\wedge -$ for each $X\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.
Similarly, $-\otimes _{\mathsf{Sets}_{*}}Y\cong -\wedge Y$ for each $Y\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.
By , we then have $\mathord {\otimes _{\mathsf{Sets}_{*}}}\cong \mathord {\wedge }$.
Below, we’ll show that if a natural isomorphism $\mathord {\otimes _{\mathsf{Sets}_{*}}}\cong \mathord {\wedge }$ exists, then it must be unique. This will show that the isomorphism constructed above is equal to the isomorphism $\text{id}^{\otimes }_{\mathsf{Sets}_{*}|X,Y}\colon X\otimes _{\mathsf{Sets}_{*}}Y\to X\wedge Y$ from before.
Constructing an Isomorphism $\text{id}^{\otimes }_{\mathbb {1}}\colon \mathbb {1}_{\mathsf{Sets}_{*}}\to S^{0}$
We define an isomorphism $\text{id}^{\otimes }_{\mathbb {1}}\colon \mathbb {1}_{\mathsf{Sets}_{*}}\to S^{0}$ as the composition
Monoidal Left Unity of the Isomorphism $\mathord {\otimes _{\mathsf{Sets}_{*}}}\cong \mathord {\wedge }$
We have to show that the diagram
commutes. To this end, we will first show that the diagram
corresponding to the case $X=S^{0}$, commutes. Indeed, consider the diagram
whose boundary diagram corresponds to the diagram $\webleft (\dagger \webright )$ above. In this diagram:
Subdiagrams $\webleft (1\webright )$, $\webleft (2\webright )$, and $\webleft (3\webright )$ commute by the naturality of $\text{id}^{\otimes }_{\mathsf{Sets}_{*}}$.
Subdiagram $\webleft (4\webright )$ commutes by .
Subdiagram $\webleft (5\webright )$ commutes by the naturality of $\rho ^{\mathsf{Sets}_{*},-1}$.
Subdiagram $\webleft (7\webright )$ commutes by the naturality of $\rho ^{\mathsf{Sets}_{*}}$, where the equality $\rho ^{\mathsf{Sets}_{*}}_{S^{0}}=\lambda ^{\mathsf{Sets}_{*}}_{S^{0}}$ comes from .
Since all subdiagrams commute, so does the boundary diagram, i.e. the diagram $\webleft (\dagger \webright )$ above. As a result, the diagram
also commutes. Now, let $X\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, let $x\in X$, and consider the diagram
Since:
Subdiagram $\webleft (5\webright )$ commutes by the naturality of $\lambda ^{\prime ,-1}$.
Subdiagram $\webleft (\ddagger \webright )$ commutes, as proved above.
Subdiagram $\webleft (4\webright )$ commutes by the naturality of $\text{id}^{\otimes ,-1}_{\mathbb {1}|\mathsf{Sets}_{*}}$.
Subdiagram $\webleft (1\webright )$ commutes by the naturality of $\text{id}^{\otimes ,-1}_{\mathsf{Sets}_{*}}$.
Subdiagram $\webleft (3\webright )$ commutes by the naturality of $\lambda ^{\mathsf{Sets}_{*},-1}$.
it follows that the diagram
also commutes. Here’s an interactive step-by-step showcase of this argument:
Subdiagram $\webleft (1\webright )$ commutes by the naturality of $\text{id}^{\otimes }_{\mathsf{Sets}_{*}}$;
Subdiagrams $\webleft (2\webright )$ and $\webleft (3\webright )$ commute by the functoriality of $\otimes $;
Subdiagram $\webleft (4\webright )$ commutes by the left monoidal unity of $\webleft (\text{id}^{\otimes },\text{id}^{\otimes }_{\mathbb {1}}\webright )$, which we proved above;
Subdiagram $\webleft (5\webright )$ commutes by the naturality of $\lambda '$;
Subdiagram $\webleft (6\webright )$ commutes by the naturality of $\rho '$, where the equality $\rho '_{\mathbb {1}_{\mathsf{Sets}_{*}}}=\lambda '_{\mathbb {1}_{\mathsf{Sets}_{*}}}$ comes from ;
it follows that the boundary diagram, i.e. diagram $\webleft (\S \webright )$, also commutes. Next, consider the diagram whose boundary diagram corresponds to the diagram $\webleft (\ddagger \webright )$ above. Since:
Subdiagrams $\webleft (1\webright )$ and $\webleft (6\webright )$ commute by ;
Subdiagram $\webleft (2\webright )$ commutes by the naturality of $\text{id}^{\otimes }_{\mathsf{Sets}_{*}}$;
Subdiagram $\webleft (\S \webright )$ commutes, as was shown above;
Subdiagram $\webleft (3\webright )$ commutes by the naturality of $\lambda ^{\mathsf{Sets}_{*}}$;
Subdiagram $\webleft (5\webright )$ commutes by of of , whose proof uses only the left monoidal unity of $\webleft (\text{id}^{\otimes },\text{id}^{\otimes }_{\mathbb {1}}\webright )$, which has been proven above;
it follows that the boundary diagram, i.e. diagram $\webleft (\ddagger \webright )$, also commutes. Next, consider the diagram whose boundary diagram corresponds to the diagram $\webleft (\dagger \webright )$. Since:
Subdiagram $\webleft (1\webright )$ commutes by the naturality of $\text{id}^{\otimes }_{\mathsf{Sets}_{*}}$;
Subdiagram $\webleft (2\webright )$ commutes by the naturality of $\sigma '$ and the fact that $\text{id}^{\otimes }_{\mathbb {1}}$ is invertible;
Subdiagram $\webleft (\ddagger \webright )$ commutes as proved above;
Subdiagram $\webleft (3\webright )$ commutes by the naturality of $\sigma ^{\mathsf{Sets}_{*}}$ and the fact that $\text{id}^{\otimes }_{\mathbb {1}}$ is invertible;
Subdiagram $\webleft (4\webright )$ commutes by the naturality of $\text{id}^{\otimes }_{\mathsf{Sets}_{*}}$;
it follows that the boundary diagram, i.e. diagram $\webleft (\dagger \webright )$ also commutes. Taking inverses for the diagram $\webleft (\dagger \webright )$, we see that the diagram
commutes as well. Now, let $X,Y\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, let $x\in X$, let $y\in Y$, and consider the diagram
which we partition into subdiagrams as follows:
Since:
Subdiagram $\webleft (2\webright )$ commutes by the naturality of $\sigma ^{\mathsf{Sets}_{*},-1}$.
Subdiagram $\webleft (5\webright )$ commutes by the naturality of $\text{id}^{\otimes ,-1}$.
Subdiagram $\webleft (¶\webright )$ commutes, as proved above.
Subdiagram $\webleft (4\webright )$ commutes by the naturality of $\sigma ^{\prime ,-1}$.
Subdiagram $\webleft (1\webright )$ commutes by the naturality of $\text{id}^{\otimes ,-1}$.
Indeed, we may write this composition as part of the diagram
which commutes since:
Subdiagram $\webleft (1\webright )$ commutes by the braidedness of $\text{id}^{\otimes }$, as proved above.
Subdiagram $\webleft (2\webright )$ commutes by .
Next, consider the diagram whose boundary diagram corresponds to the diagram $\webleft (\dagger \webright )$ above, since the composition in red is equal to $\sigma '_{S^{0},\mathbb {1}_{\mathsf{Sets}_{*}}}$ as proved above, and then the composition in red composed with $\lambda '_{S^{0}}$ is equal to $\rho '_{S^{0}}$ by . In this diagram:
Subdiagrams $\webleft (1\webright )$, $\webleft (2\webright )$, and $\webleft (3\webright )$ commute by the naturality of $\text{id}^{\otimes }_{\mathsf{Sets}_{*}}$.
Subdiagrams $\webleft (4\webright )$, $\webleft (5\webright )$, and $\webleft (6\webright )$ commute by the naturality of $\lambda ^{\mathsf{Sets}_{*}}$, where the equality $\lambda ^{\mathsf{Sets}_{*}}_{S^{0}}=\rho ^{\mathsf{Sets}_{*}}_{S^{0}}$ comes from .
Since all subdiagrams commute, so does the boundary diagram, i.e. the diagram $\webleft (\dagger \webright )$ above. As a result, the diagram
also commutes. Now, let $X\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, let $x\in X$, and consider the diagram
Since:
Subdiagram $\webleft (5\webright )$ commutes by the naturality of $\rho ^{\prime ,-1}$.
Subdiagram $\webleft (\dagger \webright )$ commutes, as proved above.
Subdiagram $\webleft (4\webright )$ commutes by the naturality of $\text{id}^{\otimes ,-1}_{\mathbb {1}|\mathsf{Sets}_{*}}$.
Subdiagram $\webleft (1\webright )$ commutes by the naturality of $\text{id}^{\otimes ,-1}_{\mathsf{Sets}_{*}}$.
Subdiagram $\webleft (3\webright )$ commutes by the naturality of $\rho ^{\mathsf{Sets}_{*},-1}$.
it follows that the diagram
also commutes. Here’s an interactive step-by-step showcase of this argument:
Subdiagrams $\webleft (1\webright )$, $\webleft (4\webright )$, $\webleft (5\webright )$, $\webleft (8\webright )$, and $\webleft (11\webright )$ commute by the naturality of $\text{id}^{\otimes }_{\mathsf{Sets}_{*}}$;
Subdiagram $\webleft (2\webright )$ commutes by the right monoidal unity of $\webleft (\text{id}^{\otimes }_{\mathsf{Sets}_{*}},\text{id}^{\otimes }_{\mathbb {1}|\mathsf{Sets}_{*}}\webright )$;
Subdiagram $\webleft (3\webright )$ commutes by the triangle identity for $\webleft (\alpha ',\lambda ',\rho '\webright )$;
Subdiagram $\webleft (6\webright )$ commutes by ;
Subdiagram $\webleft (7\webright )$ commutes by the naturality of $\rho ^{\mathsf{Sets}_{*}}$;
Subdiagram $\webleft (9\webright )$ commutes by ;
Subdiagram $\webleft (10\webright )$ commutes by ;
it follows that the boundary diagram, i.e. diagram $\webleft (\ddagger \webright )$, also commutes. Consider now the diagram whose boundary corresponds to diagram $\webleft (\dagger \webright )$ above. Since:
Subdiagrams $\webleft (1\webright )$, $\webleft (3\webright )$, $\webleft (4\webright )$, and $\webleft (6\webright )$ commute by the naturality of $\text{id}^{\otimes }_{Sets_{*}}$;
Subdiagram $\webleft (\ddagger \webright )$ commutes, as proved above;
Subdiagram $\webleft (2\webright )$ commutes by the naturality of $\alpha '$;
Subdiagram $\webleft (5\webright )$ commutes by the naturality of $\alpha ^{\mathsf{Sets}_{*}}$;
it follows that the boundary diagram, i.e. diagram $\webleft (\dagger \webright )$, also commutes. Taking inverses on the diagram $\webleft (\dagger \webright )$, we see that the diagram
commutes as well. Now, let $X,Y,Z\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, let $x\in X$, let $y\in Y$, let $z\in Z$, and consider the diagram
which we partition into subdiagrams as follows: Since:
Subdiagram $\webleft (1\webright )$ commutes by the naturality of $\alpha ^{\mathsf{Sets}_{*},-1}$.
Subdiagram $\webleft (2\webright )$ commutes by the naturality of $\text{id}^{\otimes ,-1}_{\mathsf{Sets}_{*}}$.
Subdiagram $\webleft (3\webright )$ commutes by the naturality of $\text{id}^{\otimes ,-1}_{\mathsf{Sets}_{*}}$.
Subdiagram $\webleft (\dagger \webright )$ commutes, as proved above.
Subdiagram $\webleft (4\webright )$ commutes by the naturality of $\text{id}^{\otimes ,-1}_{\mathsf{Sets}_{*}}$.
Subdiagram $\webleft (5\webright )$ commutes by the naturality of $\text{id}^{\otimes ,-1}_{\mathsf{Sets}_{*}}$.
Subdiagram $\webleft (6\webright )$ commutes by the naturality of $\alpha ^{\prime ,-1}$.
Uniqueness of the Isomorphism $\mathord {\otimes _{\mathsf{Sets}_{*}}}\cong \mathord {\wedge }$
Let $\phi ,\psi \colon -_{1}\otimes _{\mathsf{Sets}_{*}}-_{2}\Rightarrow -_{1}\wedge -_{2}$ be natural isomorphisms. Since these isomorphisms are compatible with the unitors of $\mathsf{Sets}_{*}$ with respect to $\wedge $ and $\otimes $ (as shown above), we have
Postcomposing both sides with $\lambda ^{\mathsf{Sets}_{*},-1}_{Y}$ and then precomposing both sides with $\text{id}^{\otimes ,-1}_{\mathbb {1}|\mathsf{Sets}}\otimes _{\mathsf{Sets}}\text{id}_{Y}$ gives
for each $Y\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$. Now, let $x\in X$ and consider the naturality diagrams
for $\phi $ and $\psi $ with respect to the morphisms $\webleft [x\webright ]$ and $\text{id}_{Y}$. Having shown that $\phi _{S^{0},Y}=\psi _{S^{0},Y}$, we have
for each $\webleft (x,y\webright )\in X\wedge Y$. Therefore we have
\[ \phi _{X,Y}=\psi _{X,Y} \]
for each $X,Y\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$ and thus $\phi =\psi $, showing the isomorphism $\mathord {\otimes _{\mathsf{Sets}_{*}}}\cong \mathord {\times }$ to be unique.