4.2.3 Products

Let $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ be pointed sets.

The product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ is the pair consisting of:

  • The Limit. The pointed set $\webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )$.
  • The Cone. The morphisms of pointed sets

    \begin{align*} \text{pr}_{1} & \colon \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )\to \webleft (X,x_{0}\webright ),\\ \text{pr}_{2} & \colon \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )\to \webleft (Y,y_{0}\webright ) \end{align*}

    defined by

    \begin{align*} \text{pr}_{1}\webleft (x,y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x,\\ \text{pr}_{2}\webleft (x,y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}y \end{align*}

    for each $\webleft (x,y\webright )\in X\times Y$.

We claim that $\webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )$ is the categorical product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ in $\mathsf{Sets}_{*}$. Indeed, suppose we have a diagram of the form

in $\mathsf{Sets}_{*}$. Then there exists a unique morphism of pointed sets

\[ \phi \colon \webleft (P,*\webright )\to \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright ) \]

making the diagram

commute, being uniquely determined by the conditions

\begin{align*} \text{pr}_{1}\circ \phi & = p_{1},\\ \text{pr}_{2}\circ \phi & = p_{2} \end{align*}

via

\[ \phi \webleft (x\webright )=\webleft (p_{1}\webleft (x\webright ),p_{2}\webleft (x\webright )\webright ) \]

for each $x\in P$. Note that this is indeed a morphism of pointed sets, as we have

\begin{align*} \phi \webleft (*\webright ) & = \webleft (p_{1}\webleft (*\webright ),p_{2}\webleft (*\webright )\webright )\\ & = \webleft (x_{0},y_{0}\webright ),\end{align*}

where we have used that $p_{1}$ and $p_{2}$ are morphisms of pointed sets.

Let $\webleft (X,x_{0}\webright )$, $\webleft (Y,y_{0}\webright )$, and $\webleft (Z,z_{0}\webright )$ be pointed sets.

  1. Functoriality. The assignments
    \[ \webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright )\webright )\mapsto \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright ) \]

    define functors

    \[ \begin{array}{ccc} A\times -\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -\times B\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -_{1}\times -_{2}\colon \mkern -15mu & \mathsf{Sets}_{*}\times \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*}, \end{array} \]

    defined in the same way as the functors of Chapter 2: Constructions With Sets, Item 1 of Proposition 2.1.3.1.3.

  2. Lack of Adjointness. The functors $X\times -$ and $-\times Y$ do not admit right adjoints.
  3. Associativity. We have an isomorphism of pointed sets
    \[ \webleft (\webleft (X\times Y\webright )\times Z,\webleft (\webleft (x_{0},y_{0}\webright ),z_{0}\webright )\webright ) \cong \webleft (X\times \webleft (Y\times Z\webright ),\webleft (x_{0},\webleft (y_{0},z_{0}\webright )\webright )\webright ) \]

    natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.

  4. Unitality. We have isomorphisms of pointed sets
    \begin{align*} \webleft (\text{pt},\star \webright )\times \webleft (X,x_{0}\webright ) & \cong \webleft (X,x_{0}\webright ),\\ \webleft (X,x_{0}\webright )\times \webleft (\text{pt},\star \webright ) & \cong \webleft (X,x_{0}\webright ), \end{align*}

    natural in $\webleft (X,x_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.

  5. Commutativity. We have an isomorphism of pointed sets
    \[ \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright ) \cong \webleft (Y\times X,\webleft (y_{0},x_{0}\webright )\webright ), \]

    natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.

  6. Symmetric Monoidality. The triple $\webleft (\mathsf{Sets}_{*},\times ,\webleft (\text{pt},\star \webright )\webright )$ is a symmetric monoidal category.

Item 1: Functoriality
This is a special case of functoriality of limits, , of .
Item 2: Lack of Adjointness
See [MSE 2855868].
Item 3: Associativity
This follows from Chapter 2: Constructions With Sets, Item 3 of Proposition 2.1.3.1.3.
Item 4: Unitality
This follows from Chapter 2: Constructions With Sets, Item 4 of Proposition 2.1.3.1.3.
Item 5: Commutativity
This follows from Chapter 2: Constructions With Sets, Item 5 of Proposition 2.1.3.1.3.
Item 6: Symmetric Monoidality
This follows from Chapter 2: Constructions With Sets, Item 13 of Proposition 2.1.3.1.3.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: