Let $\webleft (X,x_{0}\webright )$, $\webleft (Y,y_{0}\webright )$, and $\webleft (Z,z_{0}\webright )$ be pointed sets.

  1. Functoriality. The assignments
    \[ \webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright )\webright )\mapsto \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright ) \]

    define functors

    \[ \begin{array}{ccc} A\times -\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -\times B\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -_{1}\times -_{2}\colon \mkern -15mu & \mathsf{Sets}_{*}\times \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*}, \end{array} \]

    defined in the same way as the functors of Chapter 2: Constructions With Sets, Item 1 of Proposition 2.1.3.1.3.

  2. Associativity. We have an isomorphism of pointed sets
    \[ \webleft (\webleft (X\times Y\webright )\times Z,\webleft (\webleft (x_{0},y_{0}\webright ),z_{0}\webright )\webright ) \cong \webleft (X\times \webleft (Y\times Z\webright ),\webleft (x_{0},\webleft (y_{0},z_{0}\webright )\webright )\webright ) \]

    natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.

  3. Unitality. We have isomorphisms of pointed sets
    \begin{align*} \webleft (\text{pt},\star \webright )\times \webleft (X,x_{0}\webright ) & \cong \webleft (X,x_{0}\webright ),\\ \webleft (X,x_{0}\webright )\times \webleft (\text{pt},\star \webright ) & \cong \webleft (X,x_{0}\webright ), \end{align*}

    natural in $\webleft (X,x_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.

  4. Commutativity. We have an isomorphism of pointed sets
    \[ \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright ) \cong \webleft (Y\times X,\webleft (y_{0},x_{0}\webright )\webright ), \]

    natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.

  5. Symmetric Monoidality. The triple $\webleft (\mathsf{Sets}_{*},\times ,\webleft (\text{pt},\star \webright )\webright )$ is a symmetric monoidal category.

Item 1: Functoriality
This is a special case of functoriality of limits, , of .
Item 2: Associativity
This follows from Chapter 2: Constructions With Sets, Item 3 of Proposition 2.1.3.1.3.
Item 3: Unitality
This follows from Chapter 2: Constructions With Sets, Item 4 of Proposition 2.1.3.1.3.
Item 4: Commutativity
This follows from Chapter 2: Constructions With Sets, Item 5 of Proposition 2.1.3.1.3.

Item 5: Symmetric Monoidality
This follows from Chapter 2: Constructions With Sets, Item 13 of Proposition 2.1.3.1.3.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: